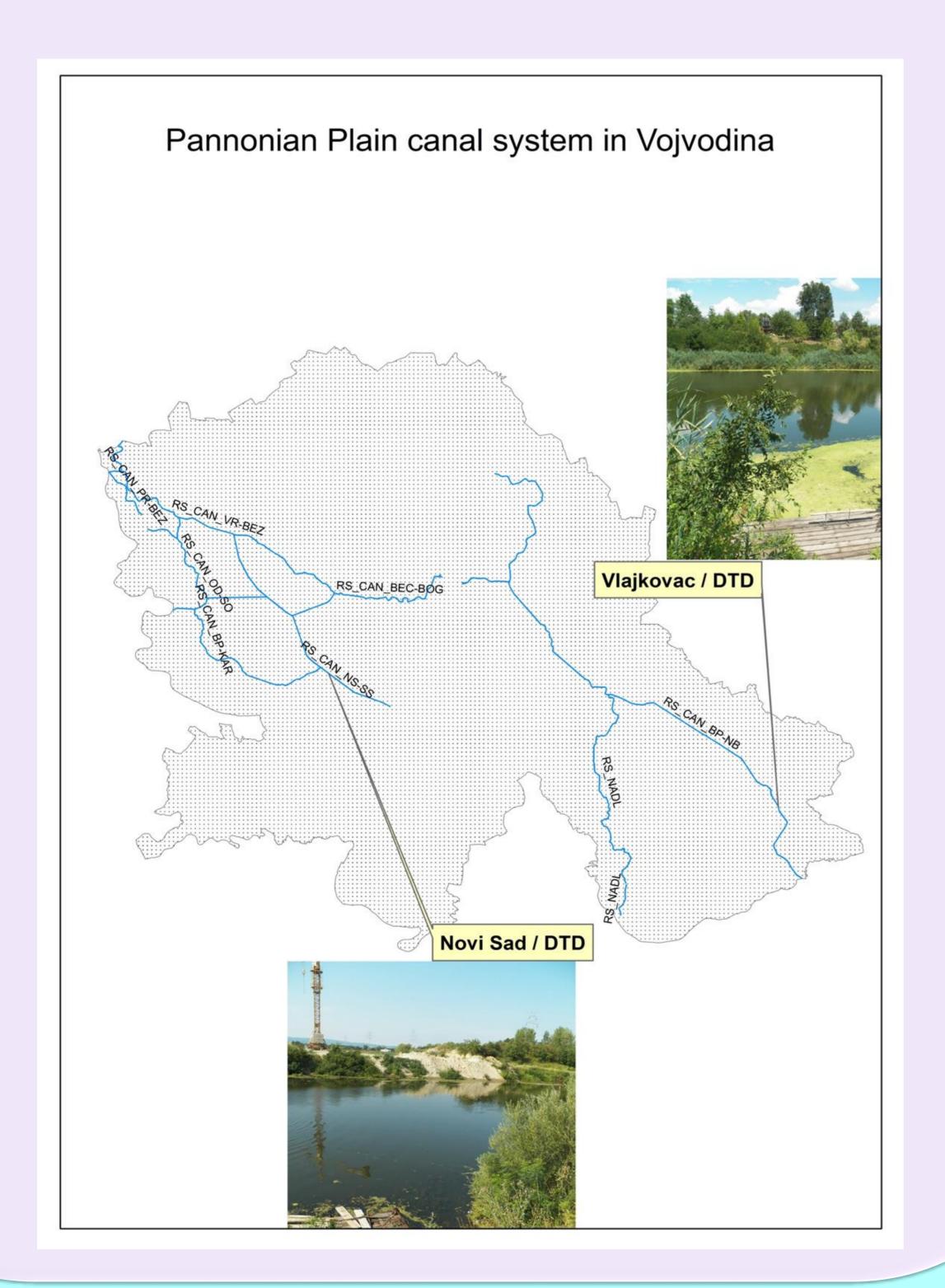


ECOLOGICAL POTENTIAL AND CHEMICAL STATUS ASSESSMENT: A PANNONIAN PLAIN CANAL SYSTEM CASE STUDY (SERBIA)

Boris NOVAKOVIĆ*, Snežana ČAĐO*, Aleksandra ĐURKOVIĆ*, Vanja MARKOVIĆ**, Milica DOMANOVIĆ*, Aleksandar TRAJKOVIĆ*, Anđelina RADOJEVIĆ***, Milenka BOŽANIĆ*** and Ivana ŽIVIĆ***

* The Serbian Environmental Protection Agency, Ministry of Environmental Protection, Belgrade, Serbia, boris.novakovic@sepa.gov.rs ** University of Belgrade, Institute for Biological Research "Siniša Stanković", Belgrade, Serbia, vanjam@ibiss.bg.ac.rs *** University of Belgrade-Faculty of Biology, Belgrade, Serbia, ivanas@bio.bg.ac.rs

Introduction

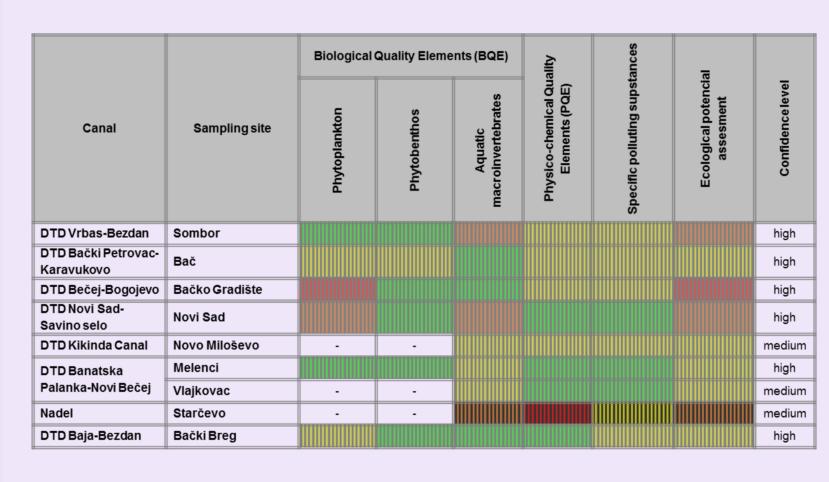

The Serbian Environmental Protection Agency (SEPA) provided a survey of ecological potential and chemical status assessment of the Pannonian Plain canal system in the territory of Vojvodina during 2012, 2013 and 2014. The sampling was carried out at total of 12 sampling sites. According to the national typology all investigated canals are classified as the artificial water body type.

The aim of the study is a comparison between the assessment of ecological potential and chemical status of the Pannonian Plain canal system as well as to provide more precise the degree of anthropogenic pressures on these water bodies.

Material and Methods

For ecological potential assessment the biological quality elements (BQE) (phytoplankton, phytobenthos and aquatic macroinvertebrates) along with physico-chemical quality elements (PCQE) (pH, Dissolved Oxygen, BOD₅, TOC, NH₄-N, NO₃-N, PO₄-P, Total Phosphorus and Cl⁻; specific polluting substances-other substances) were used. The assessment of ecological potential and chemical status was done according to the national regulations. Data on investigated sampling sites are provided in the following table and map.

Waterbody code	Canal	Sampling site		
RS_CAN_BAJ	DTD Baja-Bezdan	Bački Breg		
RS_CAN_VR-BEZ	DTD Vrbas-Bezdan	Sombor		
RS_CAN_KOS-MS	DTD Kosančić-Mali Stapar	Ruski Krstur		
RS_CAN_BP-KAR	DTD Bački Petrovac- Karavukovo	Bač		
RS_CAN_BEC-BOG	DTD Bečej-Bogojevo	Bačko Gradište		
RS_CAN_OD-SO	DTD Odžaci-Sombor	Doroslovo		
RS_CAN_NS-SS	DTD Novi Sad-Savino Selo	Novi Sad		
RS_CAN_KIK	DTD Kikinda Canal	Novo Miloševo		
RS_CAN_BP-NB	DTD Panataka Balanka Navi	Melenci		
	DTD Banatska Palanka-Novi Bečej	Vlajkovac		
		Kajtasovo		
RS_NADL	Nadel	Starčevo		

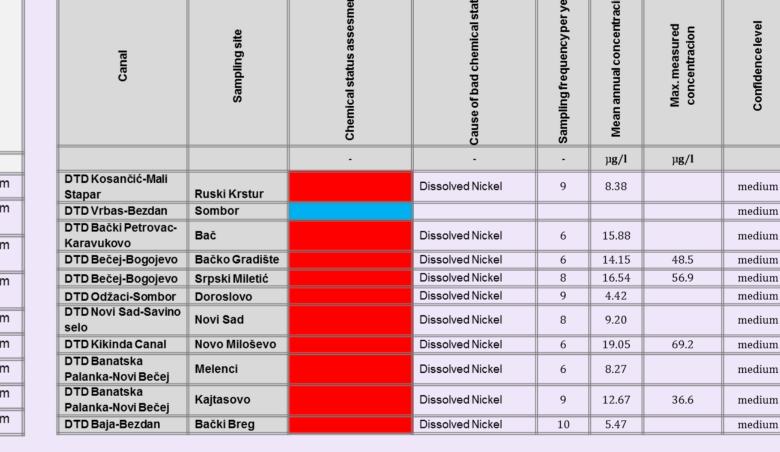

Results and Discussion

Based on the selected parameters the majority of investigated water bodies was characterised by moderate ecological potential (Class III). In 2012/2013 poor ecological potential (Class IV) was assessed at 3 sampling sites: the Sombor/DTD Vrbas-Bezdan, the Novi Sad/DTD Novi Sad-Savino Selo and the Starčevo/Nadel, while bad ecological potential (Class V) was assessed at the Bačko Gradište/DTD Bečej-Bogojevo sampling site. In 2014 poor ecological potential (Class IV) was determined at 2 sampling sites: the Sombor/DTD Vrbas-Bezdan and the Srpski Miletić/DTD Bečej-Bogojevo.

Chemical status was assessed related to limit values of priority and priority hazardous substances according to the national regulations. In cases when each of the limit values had not been exceeded the chemical status could be regarded as "achievement of good status". The most of investigated water bodies did not achieve a good chemical status. The main cause of bad chemical status at all sampling sites was increased concentration of Dissolved Nickel.

Ecological potential assessment in 2012/2013

Ecological potential assessment in 2014



Chemical status assessment in 2012/2013

Chemical status assessment in 2014

Canal	Sampling site	Chemical status assesment	Cause of bad chemical status	Sampling frequency per year	Mean annual concentracin	Max. measured concentracion	Confidence level
-	-	-	-	-	μg/l	μg/l	-
DTD Vrbas-Bezdan	Sombor		Dissolved Nickel	6	4.3		medium
DTD Bački Petrovac- Karavukovo	Bač						medium
DTD Bečej- Bogojevo	Bačko Gradište		Dissolved Nickel	6	10.1		medium
DTD Novi Sad- Savino selo	Novi Sad		Dissolved Nickel	6	4.3		medium
DTD Kikinda Canal	Novo Miloševo						medium
DTD Banatska Palanka-Novi Bečej	Melenci		Dissolved Nickel	6	4.1		medium
	Vlajkovac		Dissolved Nickel	6	5.3		medium
Nadel	Starčevo						medium
DTD Baja-Bezdan	Bački Breg		Dissolved Nickel	11	14.0	86.2	medium

Conclusion

- It is important to note the influences of heavy rain and flood wave on water quality of the canals during 2014 in Serbia.
- According to national legislation, the reliability level of this assessment is high or medium depending on included quality elements as well as the frequency of biological monitoring and monitoring of indicative physico-chemical parameters.
- For this ecological potential assessment the parameters of those quality elements that are most sensitive to different anthropogenic impacts (eutrophication, nutrient enrichment and organic pollution) were used.
- Our experience showed that phytoplankton as BQE is the most important indicator in ecological potential assessment of artificial water bodies (canals).
- Some stretches of the canals could act as isolated lentic ecosystems (low water flow, low variability of physico-chemical parameters and homogenous water conditions).